Rare earth element redistribution during high-pressure–low-temperature metamorphism in ophiolitic Fe-gabbros (Liguria, northwestern Italy): Implications for light REE mobility in subduction zones

Geology ◽  
1996 ◽  
Vol 24 (8) ◽  
pp. 711 ◽  
Author(s):  
Riccardo Tribuzio ◽  
Bruno Messiga ◽  
Riccardo Vannucci ◽  
Piero Bottazzi
2000 ◽  
Vol 19 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Zhilong Huang ◽  
Congqiang Liu ◽  
Yaoguo Hu ◽  
Jianming Zhu ◽  
Huayun Xiao ◽  
...  

2020 ◽  
Vol 6 (41) ◽  
pp. eabb6570 ◽  
Author(s):  
Michael Anenburg ◽  
John A. Mavrogenes ◽  
Corinne Frigo ◽  
Frances Wall

Carbonatites and associated rocks are the main source of rare earth elements (REEs), metals essential to modern technologies. REE mineralization occurs in hydrothermal assemblages within or near carbonatites, suggesting aqueous transport of REE. We conducted experiments from 1200°C and 1.5 GPa to 200°C and 0.2 GPa using light (La) and heavy (Dy) REE, crystallizing fluorapatite intergrown with calcite through dolomite to ankerite. All experiments contained solutions with anions previously thought to mobilize REE (chloride, fluoride, and carbonate), but REEs were extensively soluble only when alkalis were present. Dysprosium was more soluble than lanthanum when alkali complexed. Addition of silica either traps REE in early crystallizing apatite or negates solubility increases by immobilizing alkalis in silicates. Anionic species such as halogens and carbonates are not sufficient for REE mobility. Additional complexing with alkalis is required for substantial REE transport in and around carbonatites as a precursor for economic grade-mineralization.


2020 ◽  
Vol 132 (11-12) ◽  
pp. 2611-2630
Author(s):  
Yunshuai Li ◽  
Jianxin Zhang ◽  
Shengyao Yu ◽  
Yanguang Li ◽  
Hu Guo ◽  
...  

Abstract Deciphering the formation and geodynamic evolution of high-pressure (HP) granulites in a collisional orogeny can provide crucial constraints on the geodynamic evolution of subduction-exhumation. To fully exploit the geodynamic potential of metamorphic rocks, it is necessary to constrain the metamorphic ages, although it is difficult to link zircon and monazite ages to metamorphic evolution. A good case study for understanding these geodynamic processes is felsic granulites in the Bashiwake area, South Altyn Tagh. Petrographic observations suggest that the studied felsic granulites have suffered multi-stage metamorphism, and the distinct metamorphic events were documented by compositional zoning and high Y + heavy rare earth element (HREE) concentrations in the large garnet porphyroblast. Zircon U-Pb dating yielded two major age clusters: one age cluster at ca. 900 Ma represents the age of the protolith for the felsic granulite, and another age cluster at ca. 500 Ma represents the post-UHT (ultrahigh temperature) stage based on the rare earth element distribution coefficients between zircon and garnet. Meanwhile, in situ monazites U-Pb dating yielded a weighted mean 206Pb/238U age of 482 ± 3.5 Ma, and the monazite U-Pb age was interpreted to be in agreement with the metamorphic zircon rims data, which together with zircon recorded the cooling time after the UHT stage. Whole-rock major and trace elements as well as Sr-Nd isotopes suggest that the protolith of the felsic granulite derived from partial melting of ancient crustal materials with the addition of mantle materials. Integrating these results along with previous studies, we propose that the felsic granulites metamorphosed from the Neoproterozoic granitic rocks, and the granitic rocks with associated mafic-ultramafic rocks suffered a common high-pressure–ultrahigh temperature (HP-UHT) metamorphism and subsequent granulite-facies metamorphism. A tentative model of subduction-relamination was proposed for the geodynamic evolution of the Bashiwake unit, South Altyn Tagh.


1987 ◽  
Vol 51 (359) ◽  
pp. 145-149 ◽  
Author(s):  
T. H. Green ◽  
N. J. Pearson

AbstractLoveringite-davidite members of the crichtonite group were synthesized at high pressure and temperature (7.5 kbar, 1000–1050 °C) from a melt of TiO2 and rare earth element (REE) enriched basaltic andesite composition. Four sets of partition coefficients for La, Srn, Ho, Lu and Sr (analogue for Eu2+) were obtained. These show that light and heavy REE are readily accommodated, but the intermediate REE are discriminated against in the loveringite—davidite structure. This confirms the previously proposed two sites (A and M) for REE substitution in the crichtonite group. Additional experiments verified the stability of REE-rich crichtonite group minerals to 20 kbar, 1300 °C and 30 kbar, 1000 °C, and indicate that this phase may be an important accessory repository for the light and heavy REE in the upper mantle.


Sign in / Sign up

Export Citation Format

Share Document